ALMA Correlator tutorial

Alfonso Trejo Cruz

ASIAA

November 2010

lunes 6 de diciembre de 2010

Purpose

 To describe the use of the ALMA correlator and to provide examples of its capabilities. The setting of the correlator using OT is also described along with some scientific cases.

Outline

- Basic description of the correlator
- Antennas (quantization, ...)
- Tunable Filter Cards (filters, re-quantization, ...)
- Correlator Array (correlation, ...)
- Observing modes and Splatalogue
- Observing Tool (spectral lines, bandwidths, resolution, sensitivity, ...)
- Early Sience Phase

Quick description of the correlator

Short overview

- The observatory has a 12 m (64 antennas) and 7 m (12 antennas) arrays. There is a correlator for each of them.
- The main correlator will process the outputs from 64 antennas: either the 64 12m-antennas or a combination with the Compact Array (12 7m-antennas). These accounts for 2016 independent baselines!
- The correlator will process 8 GHz of bandwidth per antenna in both polarizations.
- At full-capacity, the correlator will perform 1.7X10¹⁶ multiply-andadd operations per second!

General specifications

antennas: 64 Baseband channels input per antenna: 8 Input sample format: 3 bit, 8 level at 4 Gsample/s per baseband channel Correlation sample format: 2 bit, 4 level and 4 bit, 16 level; Niquist and twice Niquist Maximum baseline delay range: 30 km Hardware cross-correlators per baseline: 32768 leads+32768 lags Hardware autocorrelations per antenna: 32768 Product pairs possible for polarization: HH, VV, HV, VH (H and V orthogonal)

ALMA correlator consists of 4 quadrants

Quadrant 1 of the correlator

From left to right: Power supply, station racks, correlator racks, station racks, computer.

Correlator type XF

- * The correlator will produce the cross-correlated data and then will apply the Fourier transform to obtain the frequency domain.
- A new design for a Tunable Filter Bank (TFB) of cards gives the opportunity to increase the spectral resolution by a factor of 32. The 2 GHz baseband is then split in 32 parts of 62.5 (or 31.25) MHz. The correlator is then called an FXF (hybrid) type.
- The correlator for the Atacama Compact Array will do first the Fourier transform of the data and then the cross correlation (FX type).

Data processing

- Antennas take the data (analogic) -->
- digitized at 3 bits -->
- bandwidth selection (TFC) -->
- to the correlator

Antennas

Digitizing

- ALMA digitizers at antennas quantize samples at the 3bit level ==> sets the system efficiency at 96%.
- * But the correlator circuits are 2-bit level.

Schematic data flow

Observing modes

- The telescope can be set in "frequency division mode", which means that high spectral resolution can be reached but with bandwidth, quantization, and Nyquist sampling restrictions.
- * In the "time division mode", the entire 2 GHz bandwidth is used at 3 bit level quantization. This mode is used to observe continuum.

Tunable Filter Cards and Correlator "planes"

Tunable Filter Cards (TFC)

- TFC splits a 2 GHz bandwidth of data into 32 parts or filters, each one with 62.5 (or 31.25) MHz.
- Central frequency of each filter is independently tunable -> each group of filters can have different resolutions and be placed anywhere (30.5 KHz precision) inside the 2GHz bandwidth!
- Each filter is processed independently in the correlator. Then crosscorrelation coefficients for the same bands for all the 64 antennas are calculated. This gives the increment by 32 in the spectral resolution.
- If not all the 32 filters are used, correlator resources can be distributed to get higher spectral resolution.

Re-quantization

- After bandwidth selection:
- In frequency division mode, after going through digital mixers and filters, the samples are re-quantized at 2- or 4-bit level.
 2-bit implies 88% correlator efficiency, while 99% for 4-bit (4 times less frequency resolution available).
- In time division mode, 3-bit samples from the ALMA digitizers go directly to the correlator. To handle this a loss of a factor of 4 in frequency resolution is done, but it allows higher sensitivity.

- * Each quadrant of the correlator has 128 cards.
- * A set of 3 chips implements fine-delay to the 3-bit signal, which is synchronized with the bulk delay of the Station Cards.

Sampling (performed in the TFC)

- * Nyquist: It is the standard option.
- Double Nyquist: Two different filters sample zero and 1/2 bit timeshifted versions of the same 62.5 MHz band. They are processed separately in the correlator and the lags are summed.
- Twice Nyquist is possible for a bandwidth smaller than 2 GHz, and imply a lost of a factor of 2 in frequency resolution, compared to the single Nyquist option.
- * For 31.25 MHz a true twice Nyquist is sampled, both at frequency and time division modes.

Schematic data flow

Station Cards:

- * To implement the geometric (bulk) delay.
- Each station card stores two 4 ms buffers, and each of them holds 4 ms of samples of the 4 GHz sample rate of a baseband.

* Lag generation for high frequency resolution modes

1 ms packets in time division operation at 125 MHz

Schematic data flow

lunes 6 de diciembre de 2010

"Planes" in the correlator

- To process all baselines, the correlator has an array chips to correlate a matrix of 64X64 elements, with a depth of 32 ("planes").
- At each of the 64X64 intersections of each plane, there is a 256 lag correlator element. These elements work with both polarizations and can deliver one 256-, two 128- or four 64-lag blocks to support polarization schemes.
- * The autocorrelation occurs at the diagonal of the matrix (same antenna) and cross-correlation elsewhere (for the rest of antennas).

*

This mode is for the frequency division mode. The input to the card is from 1 to 32 separate filters at single or double Nyquist sampling. Each plane processes one of the 32 filters coming from the TFC.

**

This mode is for the time resolution mode. The card processes the all 4 GHz clock rate of the ALMA digitizers (3 bit). Each ms of data of split into 32 ms block of 125 MHz clock rate. Each ms block is processed in each plane of the correlator.

* Each quadrant can process 2 X 2 GHz bandwidth from all the array.

Schematic data flow

Long Term Accumulator (LTA):

- To produce long time-integration options from 1 ms or 16 ms integrations coming from the "planes".
- * To provide an interface with the real-time computer system.
- In time division mode, the LTA performs the adding of the correlator planes.

4 quadrants

* The correlator consists of 4 quadrants, each of them has all the specifications mentioned before.

 Each 8 GHz per polarization per antenna are split in 4 basebands of 2GHz wide per polarization. A total of 16 GHz (8 basebands of 2 GHz) per antenna enters the correlator.

Distribution of resources

- Several spectral resolutions with a different number of filters are available to select, which also implies different bandwidths.
- * 3.8 kHz is the maximum spectral resolution.
- Data can be sampled at single- or double-Nyquist. The last one implies half of the spectral resolution, but provides higher signal to noise.
- * It is also possible to select 2- or 4-bit correlation.

Observing modes and Splatalogue

Observing modes (1 quadrant)

For one baseband: 3.8 kHz is the highest resolution.

Number of active filters	Total bandwidth	Number of spectral points	Spectral resolution	Velocity resolution at 230 GHz	Correlation*
32	2 GHz	8192/4096/2048	244/488/976 kHz	0.32/0.64/1.28 km s ⁻¹	2B-N/2B-2N/4B-N
16	1 GHz	8192/4096/2048/1024	122/244/488/976 kHz	0.16/0.32/0.64/1.28 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
8	500 MHz	8192(4096)2048/1024	61/122/244/488 kHz	0.08/0.16/0.32/0.64 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
4	250 MHz	8192/4096/2048/1024	30/61/122/244 kHz	0.04/0.08/0.16/0.32 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
2	125 MHz	8192/4096/2048/1024	15/30/61/122 kHz	0.02/0.04/0.08/0.16 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
1	62.5 MHz	8192/4096/2048/1024	7.6/15/30/61 kHz	0.01/0.02/0.04/0.08 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
1	31.25 MHz	8192/2048	3.8/7.6 kHz	0.005/0.01 km s ⁻¹	2B-2N/4B-2N
Time Division Mode	2 GHz	64	31.25 MHz	40.8 km s ⁻¹	Full 3-bit x 3-bit, Nyquist sampling

In the highlighted observing mode, 8 filters are selected in the TFCs to get 500 MHz of bandwidth. Using 2-bit quantization and twice Nyquist sampling, we get 4096 spectral points (122 kHz wide), and 0.16 km/s in velocity resolution at a 230 GHz observation.

For two basebands with no polarization cross-products: 7.6 kHz is the highest resolution.

Number of active filters	Total bandwidth	Number of spectral points	Spectral resolution	Velocity resolution at 230 GHz	Correlation*
32	2 GHz	4096	488 kHz	0.64 ms	2B-N
16	1 GHz	4096/ <u>2048</u> /1024	244/488/976 kHz	0.32/0.64/1.28 km s ⁻¹	2B-N/2B-2N/4B-N
8	500 MHz	4096(2048)1024/512	122 <mark>/244/</mark> 488/976 kHz	0.16 <mark>(0.32/</mark> 0.64/1.28 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
4	250 MHz	4096/2048/1024/512	61/122/244/488 kHz	0.04/0.08/0.16/0.32 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
2	125 MHz	4096/2048/1024/512	30/61/122/244 kHz	0.04/0.08/0.16/0.32 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
1	62.5 MHz	4096/2048/1024/512	15/30/61/122 kHz	0.02/0.04/0.08/0.16 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
1	31.25 MHz	4096/1024	7.6/30 kHz	0.01/0.04 km s ⁻¹	2B-2N/4B-2N
Time Division Mode	2 GHz	128	15.6 MHz	20.4 km s ⁻¹	2B-N

In this case, using two polarization products implies we are using DOUBLE of the resources of the correlator. Then, with 8 filters (to get the same 500 MHz of bandwidth) and the same 2bits quantization and twice Nyquist sampling, we will get 2048 spectral points (244 kHz wide), and 0.32 km/s in velocity resolution at a 230 GHz observation.

For two basebands with polarization cross-products: 15 kHz is the highest resolution.

Number of active filters	Total bandwidth	Number of spectral points	Spectral resolution	Velocity resolution at 230 GHz	Correlation*
32	2 GHz	2048	976 kHz	1.28 km s ⁻¹	2B-N
16	1 GHz	2048/ <u>1024</u>	488/ <u>976</u> kHz	0.64/1.28 km s ⁻¹	2B-N/2 <u>B-2N</u>
8	500 MHz	2048 1024	244/488 kHz	0.32/0.64 km s ⁻¹	2B-N/2B-2N
4	250 MHz	2048/1024	122/244 kHz	0.16/0.32 km s ⁻¹	2B-N/2B-2N
2	125 MHz	2048/1024/512	61/122/244 kHz	0.08/0.16/0.32 km s ⁻¹	2B-N/2B-2N/4B-N
1	62.5 MHz	2048/1024/512/256	30/61/122/244/ kHz	0.04/0.08/0.16/0.32 km s ⁻¹	2B-N/2B-2N/4B-N/4B-2N
1	31.25 MHz	2048/512	15/61 kHz	0.02/0.08 km s ⁻¹	2B-2N/4B-2N
Time Division Mode	2 GHz	64	31.25 MHz	40.8 km s ⁻¹	2B-N

In this case, using cross-products for polarization, we are using DOUBLE of the resources of the previews mode. Then, with 8 filters (to get the same 500 MHz of bandwidth) and the same 2-bits quantization and twice Nyquist sampling, we will get 1024 spectral points (488 kHz wide), and 0.64 km/s in velocity resolution at a 230 GHz observation.

Remember

- The user has to remember and keep in mind that the correlator resources are finite. Going from Nyquist sampling to twice Nyquist implies 2 times less spectral resolution.
- Going from 2-bit quantization to 4-bit implies 4 times less spectral resolution.
- In general cases, if a high spectral resolution is not needed, 4 bit correlation and twice Nyquist can be set to achieve high correlator sensitivity and require a smaller observing time.
- * User has to read carefully the tables for observing modes, and take into consideration which polarization observation scheme is needed.

- 2-bit X 2-bit correlation (Nyquist sampling) provides an efficiency of 0.88.
- 2-bit X 2-bit correlation (double Nyquist sampling) provides an efficiency of 0.94, but allows 14% less integration time.
- 4-bit X 4-bit correlation (Nyquist sampling) provides an efficiency of 0.99; and allows 27% less integration time.
- 4-bit X 4-bit correlation (double Nyquist sampling) provides an efficiency of approx. 0.99 (little usefulness).

ALMA bands

- All the observing modes described can be used in any of the bands that will be available in the ALMA observatory:
- 1: 31-45 GHz 2: 67-90 GHz 3: 84-116 GHz 4: 125-163 GHz
 5: 163-211 GHz 6: 211-275 GHz 7: 275-373 GHz
 8: 385-500 GHz 9: 602-720 GHz 10: 787-950 GHz

Splatalogue

- * The splatalogue catalog is maintained by NRAO and is a compilation from several databases for molecular and atomic lines. Many spectral lines are listed in it, so it is a very useful tool in planning observations for ALMA.
- There are several rearch options in splatalogue to narrow down the results obtained. In the next slides we show an example of the use of the database.
- * To consult the database, go to <u>http://www.splatalogue.net</u>
Query search

- Looking for spectral lines in the band 3 of ALMA, using the defaults query parameters, the database returns more than 45000 results!
- The information is presented in a table-format way, including species composition, chemical name, frequency, etc.
- By making click in a result, a new window displays more information about the line, including references and the origin of the information.

Navigate

Splatalogue Home What's New (Updates & Announcements) Motivation Notes on Observing Frequencies Notes on Quantum Numbers Notes on Line Strengths Applications (SLAP Interface) NRAO Homepage

NAASC ALMA Science Homepage

Search Parameters Select Species

conor openeo
Select Species - Ordered by Mass
All
00101 H-atom - Atomic Hydrogen
00102 Ps - Positronium
00103 Ha - Hydrogen Recombination Li
00104 HB - Hydrogen Recombination Li
00105 Hy - Hydrogen Recombination Lin
00107 Hs - Hydrogen Recombination Lir
00108 HZ - Hydrogen Recombination Lir
00201 D-atom - Atomic Deuterium 🔻
Mass calculator
Specify Ranges 4
Specify a Frequency Range:
From 84 to 116
O MHZ O GHZ
Specify an Energy Range:
From to
○ EL (cm ⁻¹) ○ EU (cm ⁻¹)
○ EL (K) ○ EU (K)
Line Intensity Lower Limits 4
Select Criteria and Specify Lower Limit:
None
CDMS/JPL (log)
⊖ sij µ²
🔿 Aij (log)
Specify a Transition +
(e.g. 1-0)
(

Search Results

Found 45125 lines from 84 - 116 GHz, showing 1 - 500 Next > Click on the chemical formula below for more information about that species.

	Species	Chemical Name	Freq in GHz (Err)	Meas Freq in GHz (Err)	Resolved QNs	CDMS/JPL Lovas/AST Intensity Intensity	E _L (cm ⁻¹)	Linelist
1	CH3CHO_vt = 1	Acetaldehyde	84.00016 (0.0508)		14(2,12)-13(3,11) E	-7.08550	214.67550	JPL
2	нсссно	2-Propynal	84.00149 (0.016)		9(5, 5)- 8(5, 4)	0.00000	63.86700	SLAIM
3	нсссно	2-Propynal	84.00149 (0.016)		9(5, 4)- 8(5, 3)	0.00000	63.86700	SLAIM
4	нсссно	2-Propynal	84.00150 (0.0171)		9(5, 4)- 8(5, 3)	-4.20470	63.86730	JPL
5	нсссно	2-Propynal	84.00150 (0.0171)		9(5, 5)- 8(5, 4)	-4.20470	63.86730	JPL
6	CH ₃ OCHO v=0	Methyl Formate		84.00162 (0.01)	25(8,17)-24(9,16) A	-6.57280	160.77301	JPL
7	CH ₃ OCHO v=0	Methyl Formate	84.00171 (0.037)		25(8,17)- 24(9,16) A	0.00000	160.77300	SLAIM
8	(CH ₃) ₂ CO v=0	Acetone	84.00289 (3.4032)		36(24,12)-36(23,13) AA	-6.21650	379.31984	JPL
9	CH3CHO vt = 1	Acetaldehyde	84.00326 (0.31.93)		25(4,21)-24(5,20) E	-6.16220	374.73881	JPL
10	CH ₃ C ₅ N	Methylcyanodiacetylene	84.00567 (0.0716)		54(6)-53(6), F=54-53	-3.63960	263.05240	CDMS
11	CH ₃ C ₅ N	Methylcyanodiacetylene	84.00567 (0.0716)		54(6)-53(6), F=53-52	-3.64770	263.05240	CDMS
12	CH ₃ C ₅ N	Methylcyanodiacetylene	84.00567 (0.0716)		54(6)-53(6), F=55-54	-3.631.60	263.05240	CDMS
13	CH3C6H	Methyltriacetylene	84.00575 (0.2411)		54(9)-53(9)	-4.77690	501.49650	CDMS
14	(CH ₃) ₂ CO v=0	Acetone	84.00852 (0.084)		21(12,10)-21(11,11) EA	0.00000	124.58600	SLAIM
15	(CH ₃) ₂ CO v=0	Acetone	84.00852 (0.0425)		21(12,10)-21(11,11) EA	-6.19300	124.58581	JPL
16	c-HCCCD	Cyclopropenylidene	84.00986 (1.3039)		23(14,10)-22(17, 5)	-7.30260	496.14590	JPL
17	(CH ₃) ₂ CO v=0	Acetone	84.01081 (0.077)		21(12,10)-21(11,11) AE	0.00000	124.58600	SLAIM
			94 01 091					

Example for the band 3 of ALMA.

C -

Looking for information about carbon monoxide

				Search F	Results				
43	<u>g'Ga-(CH₂OH)₂</u>	Ethylene Glycol	115.24661 (0.0016)		12(3,10) v= 1 - 11(3,8) v= 1	-5.99950		26.12200	CDMS
44	<u>СН₃ОСНО у=0</u>	Methyl Formate	115.24722 (0.034)		5(2,3)-4(1,4)A	0.00000		4.25800	SLAIM
45	<u>СН₃ОСНО <u>v=0</u></u>	Methyl Formate	115.24950 (0.112)		27(5,23)- 26(6,20) E	0.00000		163.65600	SLAIM
46	<u>t-CH₂CHCHO</u>	Propenal	115.24983 (0.237)		29(5,25)- 30(4,26)	0.00000		161.21600	SLAIM
47	¹³ <u>СН₃ОН v_t = 0</u>	Methanol	115.25340 (1.046)		22(5,18)-23(4,19)++	0.00000		490.40900	SLAIM
48	H2NCH2CN	Aminoacetonitrile	115.26350 (0.233)		31(2,29)-31(2,30)	-5.78400		152.21210	CDMS
49	$CH_3CH_2CN v = 0$	Ethyl Cyanide		115.26503 (0.05)	7(3,4)-7(2,5)	-4.93500		11.47930	JPL
50	¹³ CH ₃ CH ₂ CN	Ethyl Cyanide	115.26754 (0.015)		8(3,6)-8(2,7)	0.00000		13.54400	SLAIM
51	(CH ₃) ₂ CO v=0	Acetone	115.26954 (21.4113)		54(33,21)-54(32,22) EE	-6.26950		835.60529	JPL
52	<u>CO v = 0</u>	Carbon Monoxide	115.27120 (0)	115.27120 (0.001)	1-0	0.00000	60.00000	0.00000	SLAIM
53	<u>CH3CHO vt = 1</u>	Acetaldehyde	115.27182 (0.021)	115.27192 (0.04)	4(2, 2)-4(1, 3) A+-	0.00000		151.60500	SLAIM
54	<u>Ηα</u>	Hydrogen Recombination Line	115.27440 (0)		Η(38)α	0.00000		0.00000	Recomb
55	CH ₃ ¹³ CH ₂ CN	Ethyl Cyanide	115.28185 (0.137)		35(3,32)- 35(2,33)	0.00000		193.10100	SLAIM
56	<u>c-H₂COCH₂</u>	Ethylene Oxide	115.28201 (0.0172)		10(6,5)-9(9,0)	-7.95620		74.65260	CDMS
57	<u>СН₃ОСНО v=1</u>	Methyl Formate		115.28565 (0.01)	39(8,31)-39(8,32) A	-6.43660		481.33151	JPL
58	CH ₃ ¹³ CH ₂ CN	Ethyl Cyanide	115.28754 (0.006)		13(2,12)-12(2,11)	0.00000		26.14200	SLAIM
59	CH ₂ CHCN v= 0	Vinyl Cyanide		115.28767 (0.005)	20(4,16)-21(3,19)	-5.38680		86.71430	JPL
60	g'Ga-(CH ₂ OH) ₂	Ethylene Glycol		115.29074 (0.01)	12(1,11) v= 0-11(1,10) v= 1	-4.42070		23.55610	CDMS

lunes 6 de diciembre de 2010

First part of the information for CO v=0 1-0

Carbon Monoxide CO $\mathbf{v} = \mathbf{0}$ Splat ID: 02812

CDMS

204
Carbon Monoxide, $v = 0$
Oct. 2000
H. S. P. Müller
726.7430
362.6910
181.3025
108.8651
81.7184
54.5814
27.4545
13.8965
7.1223
3.7435
0.11011
57635.96
The experimental measurements were summarized by G. Winnewisser, S. P. Belov, T. Klaus, and R. Schieder, 1997, <i>J. Mol. Spectrosc.</i> , 184 , 468.
http://www.astro.uni-koeln.de/cgi-bin/cdmsinfo?file=e028503.cat
1
1
1
1
10
1
2
CDMS

Second part of the information for CO v=0 1-0

JPL

Name CO Carbon monoxide Date Aug. 1997 Contributor H. S. P. M"Iler Q_300 108.865 Q_225_0 81.718 Q_150_0 54.581 Q_75_00 27.455 Q_37_50 13.897 Q_18_75 7.122 Q_9375 3.744 MU_A 0.11011 B 57635.96 Ref1 The experimental measurements were reported by (1) G. Winnewisser,S. P. Belov, Th. Klaus, and R. Schieder, 1997, J. Mol. Spect. 184 , . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95 , 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
DateAug. 1997ContributorH. S. P. M''IlerQ_300_0108.865Q_225_081.718Q_150_054.581Q_75_0027.455Q_75_0013.897Q_18_757.122Q_9_3753.744MU_A0.11011B57635.96Ref1Singer, Interpreter and the synthesis an
Contributor H. S. P. M"ller Q_300_0 108.865 Q_225_0 81.718 Q_150_0 54.581 Q_75_00 27.455 Q_37_50 13.897 Q_18_75 7.122 Q_9_375 3.744 MU_A 0.11011 B 57635.96 Ref1 1997, J. Mol. Spect. 184 , . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95 , 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_300_0 108.865 Q_225_0 81.718 Q_150_0 54.581 Q_75_00 27.455 Q_37_50 13.897 Q_18_75 7.122 Q_9_375 3.744 MU_A 0.11011 B 57635.96 Ref1 The experimental measurements were reported by (1) G. Winnewisser,S. P. Belov, Th. Klaus, and R. Schieder, 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_225_0 81.718 Q_150_0 54.581 Q_75_00 27.455 Q_37_50 13.897 Q_18_75 7.122 Q_9_375 3.744 MU_A 0.11011 B 57635.96 The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder, 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_150_0 54.581 Q_75_00 27.455 Q_37_50 13.897 Q_18_75 7.122 Q_9_375 3.744 MU_A 0.11011 B 57635.96 The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder, 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_75_0027.455Q_37_5013.897Q_18_757.122Q_9_3753.744MU_A0.11011B57635.96The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. SchiederRef11997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535.Ref20http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_37_5013.897Q_18_757.122Q_9_3753.744MU_A0.11011B57635.96Ref1The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. SchiederRef11997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535.Ref20http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_18_757.122Q_9_3753.744MU_A0.11011B57635.96Ref1The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535.Ref20http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Q_9_3753.744MU_A0.11011B57635.96Ref1The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder, 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535.Ref20http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
 MU_A 0.11011 B 57635.96 Ref1 The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
 B 57635.96 The experimental measurements were reported by (1) G. Winnewisser, S. P. Belov, Th. Klaus, and R. Schieder 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
 Ref1 The experimental measurements were reported by (1) G. Winnewisser,S. P. Belov, Th. Klaus, and R. Schieder 1997, J. Mol. Spect. 184, . The dipole moment and dipole centrifugal corrections are taken from (2) D. Goorvitch, 1994, Astrophys. J. Suppl. 95, 535. Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
Ref20 http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d028001.cat
planet 1
ism_hotcore 1
comet 1
extragalactic 1
LineList 12
v1_0 1
v2_0 2
linelist JPL

Observing Tool (OT)

purpose

 Here we assume the user has already set all necessary parameters, including the sources to study, calibrators, etc. This part shows how to set the bandwidth to use, spectral lines, spectral resolution, etc.

Basic settings

- Inside an ALMA proposal in OT, the Spectral Setup tab can be found inside every Science Goal tab.
- At the Spectral Setup window in OT, the user can choose from: "Up to 4 spectral elements", "More than 4 spectral elements", "Single continuum (average frequency)", and "Spectral scan".
- Also, the user can choose the polarization products: "single_x", "single_y", "double" (default), and "full" (with cross-products).

- * The "Select Lines" button takes directly to the list of spectral lines, and it is of easy use. Another way is to type the frequency for the spectral element (and identifier) by hand.
- Once the lines are selected, by doing double-click in a line, the spectral resolution can be chosen.
- The time division mode can be accessed directly by marking the dedicated box for continuum in each spectral element.

Restrictions on spectral elements

- Each spectral element can be up to 2 GHz wide, and as small as 62.5 (or 31.25) MHz, and be placed anywhere inside an ALMA Band. In the option of up to 4 spectral elements, the user will define each of them in the 4-element list provided.
- * For the option of using more than 4 spectral elements, the user has to group them in the 4 set tabs. In each tab, correlator resources (for 1 quadrant) can be divided in 1, 1/2, 1/4 or 1/8. Then, up to 8 spectral elements can be defined in each set tab.
- * All the spectral elements inside a set tab must be inside the baseband!, i.e. inside a band of 2 GHz wide.

Restrictions on polarization choices

- Each Science Goal can be defined for ONLY one of the polarization choices. If needed, spectral windows with different polarizations can be set, using several Science Goal sets.
- The polarization choice applies to all the spectral windows in the Science Goal set. This is clearly seen in the next examples.

OT example I: Time division mode only with different polarizations.

1 & 3: 2 GHz with 128 spectral points (15.6 MHz wide). 2 pol, 2-bit, Nyquist. 2 & 4: 2 GHz with 64 spectral points (31.25 MHz wide). 4 pol, 2-bit, Nyquist

Up to 4 spectral windows

In one Science Goal tab we set the 2 spectral windows with the DOUBLE polarization option.

ditors			
Spectral Spatial Spectral Setup C	atalog		
It you want to setup more than 4, you ne Those sets are called "Basebands", and	eed to arrange the the width of a bas	m into 4 or tewer sets of spectral eleme eband is 2GHz.	nts/windows.
Spectral Type			
	🖲 Up	to 4 spectral elements/windows	
Spectral Type: Choose the type	e of spectral 🔾 Mo	ore than 4 spectral elements/windows	
observation you wish to make	. 🔾 Sin	gle continuum (average frequency)	
	🔾 Sp	ectral scan	
Polarization Products desired	⊂ SIN	IGLE_X 🔾 SINGLE_Y 🖲 DOUBLE 🔾 FUL	L
Up to 4 spectral elements/windows			
Center Freq Rest Center Freq Sky	Transition	Bandwidth, Resolution	Continuum
231.00000 GHz 231.23205 GHz		2000MHz, 15.625MHz(20.258 k	V
245.00000 GHz 245.24611 GHz		2000MHz , 15.625MHz (19.100 k	

In another Science Goal tab we set the 2 spectral windows with the FULL polarization option.

Editors					
Spectral Spatial Spectral	Setup Catalog				
IT you want to setup more that Those sets are called "Baseba	n 4, you need to an ands", and the width	ange them into i of a baseband	4 or tewer sets of spect is 2GHz.	rai eiemer	its/windows.
Spectral Type					
		Up to 4 s	pectral elements/windo	ws	
Spectral Type: Choo	se the type of spect	tral 🔾 More tha	n 4 spectral elements/w	indows	
observation you wish	h to make	🔾 Single co	ntinuum (average freque	ency)	
		Spectral :	can		
Polarization Product	s desired	SINGLE_X	⊖ SINGLE_Y ⊖ DOUB	LE 🖲 FULI	L
Up to 4 spectral elements/win	dows				
Center Freq Rest Center F	req Sky 🛛 🛛 Tran	sition	Bandwidth, Resolutio	n	Continuum
233.00000 GHz 233.2340	6 GHz	2000	MHz, 31.25MHz(40.1	168 km	V
249.00000 GHz 249.2501	.3 GHz	2000	MHz, 31.25MHz(37.5	587 km	
	**********************				***********************

OT example II: Time division mode and frequency division mode together with the same polarization

4: 2 GHz with 128 spectral points (15.6 MHz wide). 2 pol, 2-bit, Nyquist
 31.25 MHz with 1024 spectral points (30 kHz wide). 2 pol, 4-bit, 2-Nyquist
 3: 125 MHz with 512 spectral points (244 kHz wide). 2 pol, 4-bit, 2-Nyquist

Up to 4 spectral bands

 This example uses double polarization products for 4 spectral windows. The continuum box is chosen to select the time division mode.

Spectral Spatial	Spectral Setup	Catalog		
Spectral T observatio	'ype: Choose the typ on you wish to make	● Up De of spectral ○ Mo ○ Sing ○ Spe	to 4 spectral elements/windows re than 4 spectral elements/windows gle continuum (average frequency) ectral scan	
Polarizatio	on Products desired	\bigcirc SIN	GLE_X 🔾 SINGLE_Y 🖲 DOUBLE 🔾 FUL	L
Up to 4 spectral ele	ments/windows			
Center Freq Rest	Center Freq Sky	Transition	Bandwidth, Resolution	Continuum
218.00000 GHz	218.21899 GHz		2000MHz , 15.625MHz (21.466 k	
232.00000 GHz	232.23305 GHz		2000MHz , 15.625MHz (20.171 k	
230.53800 GHz	230.76958 GHz	COv=0 2-1	125MHz , 244.14KHz (0.317 km	
219.56036 GHz	219.78091 GHz	C180 2-1	31.25MHz, 30.518KHz (0.042 k	
	Se	elect Lines Add	Delete	

OT example III: Time division mode and frequency division mode together with the same polarization

1 & 4: 2 GHz with 128 spectral points (15.6 MHz wide). 2 pol, 2-bit, Nyquist.
2 y 3: All spectral windows here have 125 MHz of bandwidth with 1024 spectral points (122 kHz wide). 2 pol, 4-bit, Nyquist.

More than 4 spectral windows

Editors	
Spectral Spatial Spectral Setup Catalog	
Spectral Type	
	 Up to 4 spectral elements/windows
Spectral Type: Choose the type of spectra	al More than 4 spectral elements/windows
observation you wish to make	 Single continuum (average frequency)
	 Spectral scan
Polarization Products desired	○ SINGLE_X ○ SINGLE_Y
More than 4 spectral elements/windows	
Set-0 Set-1 Set-2 Set-3	
Fracti Center Freq Rest Center Freq Sky Tra	ansition Bandwidth, Resolution Continu
1(Full) 218.30000 GHz 218.51929 GHz	2000MHz, 15.625MHz(21.436
_ I` ♠.₩	
Feedback	

	Spectral Type: (Thoose the type of	spectral 🖲 More t	than 4 spectral elements/wind	dows	
	observation you	wish to make	🔾 Single	continuum (average frequenc	S)	
			🔾 Spectr	al scan		
	Polarization Pro	ducts desired		E_X 🔾 SINGLE_Y 🖲 DOUBLE	E 🔾 FULL	
More th	an 4 spectral elen	nents/windows				
Set-0	Set-1 Set-2	Set-3				
Fracti	Center Freq Rest	Center Freq Sky	Transition	Bandwidth, Resolution	n	Continu
	219.56036 GHz	219.78091 GHz	C180 2-1	125MHz , 122.07KHz (0.	167 k	
1/4	220 20868 CH-	220.62008 GHz	13COv=0 2-1	125MHz , 122.07KHz (0.	166 k	
1/4 1/4	220.39666 GHZ					
1/4 1/4 1/4	220.07849 GHz	220.29957 GHz	CH30Hvt=0 8(125MHz , 122.07KHz (0.	166 K	
1/4 1/4 1/4 1/4	220.07849 GHz 219.94943 GHz	220.29957 GHz 220.17038 GHz	CH3OHvt=0 8(SO3Σv=	125MHz , 122.07KHz (0. 125MHz , 122.07KHz (0.	166 k 166 k	

	Spectral Type:	Choose the type of	' spectral 🖲 More t	han 4 spectral elements/windo	WS
	observation you	i wish to make	🔾 Single	continuum (average frequency)	
			 Spectr 	al scan	
	Polarization Pro	ducts desired	🔾 SINGLE	E_X — SINGLE_Y DOUBLE	FULL
More t	han 4 spectral eler	nents/windows			
Set-0) Set-1 Set-2	Set-3			
Fracti	. Center Freq Rest	Center Freq Sky	Transition	Bandwidth, Resolution	Continu
1/4	230.53800 GHz	230.76958 GHz	COv=0 2-1	125MHz , 122.07KHz (0.15	9 k
1/4	229.86422 GHz	230.09513 GHz	CH30Hvt=0 19	125MHz , 122.07KHz (0.15	9 k
1/4	229.34763 GHz	229.57802 GHz	SO2v=0 11(5,7	125MHz , 122.07KHz (0.15	9 k
1/4	231.32164 GHz	231.55401 GHz	N2D+ J=3-2	125MHz , 122.07KHz (0.15	8 k
		Select	Lines Add	Delete	

pectral	Spatial Spectral Setup Catalog	
Spectral T	Гуре	
		 Up to 4 spectral elements/windows
	Spectral Type: Choose the type of spectral	More than 4 spectral elements/windows
	observation you wish to make	 Single continuum (average frequency)
		 Spectral scan
	Polarization Products desired	○ SINGLE_X ○ SINGLE_Y
More thar	n 4 spectral elements/windows	
Set-0	Set-1 Set-2 Set-3	
Fracti C	Center Freq Rest Center Freq Sky Trai	nsition Bandwidth,Resolution Continu
1/Eull\ [2]	32.30000 GHz 232.53335 GHz	2000MHz, 15.625MHz(20.144 🖌

After this...

 Further steps are required to set the Scheduling Blocks (SBs), which are required to fully submit an observation program to the observatory.

Early Science Phase of ALMA

 Only one part of the resources described before will be available for the ES phase of the ALMA observatory. With the time, more antennas and receivers will be available for users.

resources for ES

- * 16 antennas will be available.
- * Bands 3, 6, 7, 9.
- One quadrant of the correlator will process all 4 baseband pairs for the 16 antennas.
- * Only 2-bit requantization and simple Nyquist available.
- * NO multiple spectral windows per baseband!
- Each baseband's spectral window must have identical characteristics.

BANDS 3, 6, 7, 9

These 5 highest-priority observing modes will be available for ES

Mode	Filters	width	Spectral points	Spectral resolution	Polarization products	B3 84-116 (km/s)	B6 211-275 (km/s)	B7 275-373 (km/s)	B9 602-720 (km/s)
70	TimeDiv Mode	2 GHz	64	31.25 MHz	4	~ 94	~ 39	~ 29	~ 14
7	32	2 GHz	4096	488 kHz	2	~ 1.5	~ 0.6	~ 0.5	~ 0.2
9	8	500 MHz	4096	122 kHz	2	~ 0.4	~ 0.15	~ 0.1	~ 0.05
12	1	62.5 MHz	4096	15 kHz	2	~ 0.05	~ 0.02	~ 0.015	~ 0.007
18	1	62.5 MHz	2048	30 kHz	4	~ 0.09	~ 0.04	~ 0.03	~ 0.014
The column "B3 84-116" shows the velocity resolution at the center of the band 3. Similar for									

the other columns/bands.

lunes 6 de diciembre de 2010

Spectral lines for band 3 (84-116 GHz)

Representative transitions

85162.223 (5) HC¹⁸O⁺ 1-0 85338.906* (7) c-C₃H₂ 2(1,2)-1(0,1) 86340.1764 (2) H¹³CN 1-0 F=2-1 85347.869* (5) HCS⁺ 2-1 85457.299* (1) CH₃CCH 5(K)-4(K) 85672.57 * (1) C₄H 9-8 J=17/2-15/2 86054.967 (1) HC¹⁵N 1-0 86754.288* (1) H¹³CO⁺ 1-0 86846.995* (6) SiO 2-1 v=0 87090.859 (46) HN¹³C 1-0 F=2-1 87316.925 (4) C₂H 1-0 3/2-1/2 F=2-1 88631.8473 (10) HCN 1-0 F=2-1 17.2 89188.526* (21) HCO⁺ 1-0 90663.574 (10) HNC 1-0 F=2-1 90978.989* (3) HCCCN 10-9 91987.086* (1) CH₃CN 5(K)-4(K) 93176.265 (7) N₂H⁺ 1-0 F₁=0-1 F=1-2 93870.098* (12) CCS N,J=7,8-6,7 96412.950 (1) C³⁴S 2-1 96741.377* (3) CH₃OH 2(0,2)_1(0,1) A++ 97980.953 (2) CS 2-1 99299.905* (14) SO N,J=2,3-1,2

100076.386* (3) HCCCN 11-10 102547.983* (1) CH₃CCH 6(K)-5(K) 109173.638* (3) HCCCN 12-11 109782.176 (1) C¹⁸O 1-0 110201.354 (1) ¹³CO 1-0 110383.522* (1) CH₃CN 6(K)-5(K) F=7-6 112358.988 (8) C¹⁷O 1-0 F=7/2-5/2 113144.192 (9) CN 1-0 J=1/2-1/2 F=1/2-3/2 115271.202* (1) CO 1-0

Spectral lines for band 6 (211-275 GHz)

Representative transitions

 $211211.455*(10) H_2CO 3(1,3)-2(1,2)$ 213360.641* (11) HCS⁺ 5-4 213427.118* (7) CH₃OH 1(1,0)-0(0,0) E 214385.741* (17) ²⁹SiO 5-4 v=0 216112.580* (1) DCO⁺ 3-2 $216278.749*(9) \text{ c-} \text{C}_3\text{H}_2 3(3,0)-2(2,1)$ 217104.984* (14) SiO 5-4 v=0 217238.530* (1) DCN 3-2 218222.195* (10) H₂CO 3(0,3)-2(0,2) 218475.642* (10) H₂CO 3(2,2)-2(2,1) 218760.071* (10) H₂CO 3(2,1)-2(2,0) 219560.358 (1) C¹⁸O 2-1 219949.433* (17) SO N,J=5,6-4,5 220398.684 (1) ¹³CO 2-1 220747.259* (2) CH₃CN 12(K)-11(K) 222166.969* (2) CH₃CCH 13(K)-12(K) 224714.385* (3) C¹⁷O 2-1 225697.781* (10) H₂CO 3(1,2)-2(1,1) 225896.720 (38) HDO 3(1,2)-2(2,1) 2.3 226874.764* (20) CN 2-1 J=5/2-3/2 F=7/2-5/2 228910.471* (15) DNC 3-2 230538.000 (1) CO 2-1 231321.635 (50) N₂D⁺ 3-2 239137.914* (2) CH₃CN 13(K)-12(K) 239252.292* (2) CH₃CCH 14(K)-13(K) 241016.088 (1) C³⁴S 5-4

241791.367* (6) CH₃OH 5(0.5)-4(0.4) A+ 244222.170^{*} (11) c-C₃H₂ 3(2,1)-2(1,2) 244935.556 (3) CS 5-4 $249054.409*(5) c-C_3H_2 5(2,3)-4(3,2)$ 255050.260 (59) HDO 5(2,3)-4(3,2) 255479.389 (10) HC¹⁸O⁺ 3-2 256027.093* (12) HCS⁺ 6-5 256336.627* (3) CH₃CCH 15(K)-14(K) 257255.202* (29) ²⁹SiO 6-5 v=0 257527.381* (2) CH₃CN 14(K)-13(K) 258156.996 (1) HC¹⁵N 3-2 259011.787* (1) H¹³CN 3-2 260255.342* (5) H¹³CO⁺ 3-2 260518.122* (17) SiO 6-5 v=0 261263.39 * (10) HN¹³C 3-2 261843.756* (18) SO N,J=6,7-5,6 262004.26 (5) C₂H 3-2 J=7/2-5/2 F=4-3 265759.484* (6) c-C₃H₂ 4(4,1)-3(3,0) 265886.431* (1) HCN 3-2 266161.070 (25) HDO 2(2,0)-3(1,3) 267557.633* (60) HCO+ 3-2 271981.111* (7) HNC 3-2

241561.550 (37) HDO 2(1,1)-2(1,2)

Spectral lines for band 7 (275-373 GHz)

Representative transitions

275915.569* (2) CH₃CN 15(K)-14(K) 279511.760* (16) N₂H⁺ 3-2 281526.927* (13) H₂CO 4(1,4)-3(1,3) 288143.858* (1) DCO+ 4-3 289209.068 (1) C³⁴S 6-5 289644.907* (1) DCN 4-3 290110.655* (7) CH₃OH 6(0,6)-5(0,5) A 290623.422* (13) H₂CO 4(0,4)-3(0,3) 291948.077* (13) H₂CO 4(2,2)-3(2,1) 293912.091* (2) CS 6-5 $300836.642*(13) H_2CO 4(1,3)-3(1,2)$ 303926.974* (20) SiO 7-6 v=0 304077.914* (19) SO N,J=7,8-6,7 321225.676*(6) H₂O 10(2,9)-9(3,6) 325152.899(1) H₂O 5(1,5)-4(2,2)329330.552(2) C¹⁸O 3-2 330587.965 (1) ¹³CO 3-2 331071.541* (2) CH₃CN 18(K)-17(K) 335395.50 (3) HDO 3(3,1)-4(2,2) 337061.104* (12) C¹⁷O 3-2 337396.459(1) C³⁴S 7-6 338204.003^{*} (7) c-C₃H₂ 5(5,1)-4(4,0) 338408.718* (7) CH₃OH 7(0,7)-6(0,6) A++ 339516.690* (30) CN 3-2 J=5/2-5/2 F=7/2-7/2 340630.70 * (16) HC¹⁸O⁺ 4-3

342882.857* (2) CS 7-6 342980.848* (70) ²⁹SiO 8-7 v=0 344200.109 (1) HC¹⁵N 4-3 345339.756* (2) H¹³CN 4-3 345795.990* (1) CO 3-2 346528.587* (20) SO N.J=8.9-7.8 346998.347* (13) H¹³CO⁺ 4-3 347330.824* (23) SiO 8-7 v=0 348340.49 * (10) HN¹³C 4-3 349453.698* (2) CH₃CN 19(K)-18(K) $351768.648*(15) H_2CO 5(1,5)-4(1,4)$ 354505.473* (1) HCN 4-3 356734.242* (75) HCO⁺ 4-3 360169.780* (1) DCO⁺ 5-4 362045.742* (1) DCN 5-4 362630.304* (8) HNC 4-3 362736.024* (15) H₂CO 5(0,5)-4(0,4) 363945.876* (15) H₂CO 5(2,4)-4(2,3) $372421.34(20) H_2D^+ 1(1.0) - 1(1.1)$

Spectral lines for band 9 (602-720 GHz)

Representative transitions

607174.701* (78) H¹³CO⁺ 7-6 607608.899* (57) SiO 14-13 v=0 609507.66 * (20) HN¹³C 7-6 611329.71 (8) C₂H 7-6 13/2,13/2-11/2,11/2 624208.46 * (13) HCO⁺ 7-6 624926.466* (2) CH₃CN 34(K)-33(K) 626351.394* (5) C³⁴S 13-12 627558.440* (9) CH₃OH 13(0,13)-12(0,12) A++ 634510.820* (8) HNC 7-6 636532.466* (6) CS 13-12 643269.867* (2) CH₃CN 35(K)-34(K) 645875.924 (30) SO N,J=15,16-14,15 647081.760* (19) H₂CO 9(0,9)-8(0,8) 650957.739* (67) SiO 15-14 v=0 651565.964* (4) DCN 9-8 653970.172* (18) H₂CO 9(2,9)-8(2,8) 658553.278 (1) C¹⁸O 6-5 661067.276 (2) ¹³CO 6-5 661610.068* (2) CH₃CN 36(K)-35(K) 662209.169* (18) H₂CO 9(2,7)-8(2,6) 674009.286* (19) C¹⁷O 6-5 674473.625* (6) C³⁴S 14-13 674809.798* (19) H₂CO 9(1,8)-8(1,7)

675612.646* (10) CH₃OH 14(0,14)-13(0,13) A++ 679946.978* (2) CH₃CN 37(K)-36(K) 680026.757* (38) CN 6-5 J,F=11/2,11/2-9/2,11/2 685435.929* (7) CS 14-13 688273.790 (2) HC¹⁵N 8-7 688735.700 (30) SO N,J=16,17-15,16 690552.068* (4) H¹³CN 8-7 691473.076* (1) CO 6-5 693876.33 * (12) H¹³CO⁺ 8-7 694295.863* (78) SiO 16-15 v=0 696534.36 * (25) HN¹³C 8-7 698280.505* (3) CH₃CN 38(K)-37(K) 698607.46 (10) C₂H 8-7 15/2,13/2-13/2,11/2 701370.493* (18) H₂CO 10(1,10)-9(1,9) 708877.001* (3) HCN 8-7 713341.37 * (16) HCO⁺ 8-7 716596.959* (3) CH₃CN 39(K)-38(K) 716938.389* (19) H₂CO 10(0,10)-9(0,9) 718158.806* (15) CH₃OH 15(1,15)-14(1,14) A++

OT example IV: CO

- * One spectral line of interest in extragalactic astronomy is CO, with several of its transitions. For example, the rotational transitions J=1-0 (115.271 GHz, *i. e.* band 3), 2-1 (230.538 GHz, band 6), 3-2 (345.796 GHz, band 7), 6-5 (691.4731 GHz, band 9).
- Using the observing mode 7 for each one of the lines, we can have (in a 2 GHz wide bandwidth) a velocity resolution of 1.27, 0.63, 0.42, and 0.21 km/s, respectively.
- As we noted before, each line must be set up in a different science goal, since they belong to different bands.

in OT

first science goal

Editors							
Spectral Spatial Spectr	ral Setup 🦷	Catalog					
Spectral Type: Choose the type of spectral \bigcirc More than 4 spectral elements/windows							
observation you wish to make							
Spectral scan							
Polarization Produ	ucts desired	SIN	GLE_X 🔾 SINGLE_Y 🖲 DOUBLE 🔾 FU	LL			
Up to 4 spectral elements/windows							
Center Freq Rest Cente	Center Freq Rest Center Freq Sky Transi		Bandwidth, Resolution	Continuum			
115.00000 GHz 114.90	644 GHz	COv=0 1-0	2000MHz , 488.28KHz (1.274 k				
Select Lines Add Delete							
Feedback							

second science goal

8	Editors						
	Spectral Spatial Spectral Setup Catalog						
	_Spectral Type						
10000	Up to 4 spectral elements/windows						
10000	Spectral Type: Choose the type of spectral \bigcirc More than 4 spectral elements/windows						
0000	observation you wish to make O Single continuum (average frequency)						
10000	 Spectral scan 						
00000000	Polarization Products desired						
1000	Up to 4 spectral elements/windows						
	Center Freq Rest Center Freq Sky Transition Bandwidth, Resolution Continuum						
	230.53800 GHz 230.35044 GHz COv=0 2-1 2000MHz , 488.28KHz (0.635 k						
000000							
10000							
	Select Lines Add Delete						

third science goal

Editors						
Spectral Spatial Spectral Setup	Catalog					
Spectral Type						
	🖲 Up	to 4 spectral elements/windows				
Spectral Type: Choose the type of spectral O More than 4 spectral elements/windows						
observation you wish to m	ake 🔾 Sin	Single continuum (average frequency)				
	🔾 Spe	 Spectral scan 				
Polarization Products desir	ed 🔾 SIN	IGLE_X 🔾 SINGLE_Y 🖲 DOUBLE 🔾 FU	LL			
Up to 4 spectral elements/windows-						
Center Freq Rest Center Freq Sk 345.79599 GHz 345.51466 GHz	y Transition COv=0 3-2	Bandwidth,Resolution 2000MHz , 488.28KHz (0.424 k	Continuum			
	Select Lines Add	d Delete				

fourth science goal

Editors								
Spectral Spatial	Spectral Setup	Catalog						
Spectral Type					4			
		۱ ا	lp to 4 spectral elements/windows					
Spectral Type: Choose the type of spectral \bigcirc More than 4 spectral elements/windows								
observati	on you wish to make	: د ن	 Single continuum (average frequency) 					
Polarization Products desired			 Spectral scan 					
			INGLE_X 🔾 SINGLE_Y 🖲 DOUBLE 🔾 FU					
Up to 4 spectral elements/windows								
Center Freq Rest	Center Freq Sky	Transition	Bandwidth, Resolution	Continuum				
691.47308 GHz	690.91052 GHz	COv=0 6-5	2000MHz, 488.28KHz(0.212 k					
·		alact Lines	dd Doloto					
Select Lines Add Delete								
Faadback								

OT example V: lines in band 7

- In this example the next lines are observed: SiO J=8-7 (347.33... GHz), CO J=3-2 (345.79... GHz), SO N,J=8,9-7,8 (346.52... GHz), and H13CO+ J=4-3 (346.99... GHz). These are some of the lines used in the star formation field.
- * We can observe these lines simultaneously, puting each one in a baseband. In star formation, high resolution in velocity is needed most of the times. We then use the mode 12 to achieve it. We will have 62.5 MHz of bandwidth for each line, at Nyquist sampling, 2-bit requantization and two polarizations.
using the Upper Sideband (USB)

Inside ALMA band 7

100 280100	290100 300100 1	0bserve 310ہ0 م0ار320	ed Frequency 00 _ 330100 07	340100	350400 <u>1</u> 36040	0 370 <u>1</u> 00	-
				LOI	50 N,J=8,9-7,8 (nj 5i0v=0 8-7 (ngc 3 0v=0 3-2 (ngc 25 H13CO+ 4-3 (ngc	gc 253) 253) 3) 253))
					·····	<u>_</u>	- /
100 ' 280100 '	290100 ' 300100 ' .	310,000 ' 320, Frequency	00 330 00 in Target Frame	340,00	350100 ' 36010	0 ' 370100	'
00 ' 280,00 '	290100 ' 300100 '	310,000 ' 320, Frequency ransitions Selec	00 ' 330,00 in Target Frame ct Other Transitions	' 340 00 ' Pan To L	350100 ' 36010 ine Zoom To B	00 ' 370,000	
00 ' 280 00 '	290100 ' 300100 '	310,00 ' 320, Frequency ransitions Selec	00 ' 330,00 in Target Frame at Other Transitions	940.00 Pan To L	350100 ' 36010 ine Zoom To B	00 ' 370,00 3and Reset	
00 ′ 280 00 ′ I Receiver Bands [Spectral Type	290100 ' 300100 '	310,00 ' 320, Frequencv Transitions Selec	00 ' 330,00 in Target Frame at Other Transitions	' 340,00 ' Pan To L	350100 ' 36010 ine Zoom To B	oo ' 370,00 3and Reset	
00 ′ 280 00 ′ I Receiver Bands [Spectral Type	290100 ' 300100 '	310,00 ' 320, Frequency ransitions Selec	00 ' 330,00 in Target Frame at Other Transitions Up to 4 spectra	Pan To L	350100 ' 36010 ine Zoom To B dows	00 ' 370,00 3and Reset	
00 ′280,00 ′ I Receiver Bands [Spectral Type	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th	310,00 ' 320, Frequency ransitions Selections	00 ' 330,00 in Target Frame at Other Transitions Up to 4 spectra More than 4 sp	Pan To L Pan To L l elements/win ectral elements	350100 ' 36010 ine Zoom To B dows s/windows	00 ' 370,00 3and Reset	
00 ′ 280,00 ′ I Receiver Bands [Spectral Type	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r	310,00 ' 320, Frequency ransitions Selec ie type of spectral make	00 330,00 in Target Frame at Other Transitions Up to 4 spectra More than 4 sp Single continuur	Pan To L Pan To L l elements/win ectral elements n (average free	350100 ' 36010 ine Zoom To B dows s/windows quency)	and Reset	
00 ′ 280,00 ′	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r	310,00 ' 320, Frequency ransitions Selec ne type of spectral make	00 330,00 in Target Frame at Other Transitions Other Transitions More than 4 sp Single continuur Spectral scan	Pan To L Pan To L l elements/win ectral elements n (average free	350100 ' 36010 ine Zoom To B dows s/windows quency)	and Reset	
00 ′280,00 ′	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r Polarization Products des	310,00 ' 320, Frequency Transitions Selection Selections Selection	 OO ¹ 330,00 in Target Frame Content of the the the the the the the the the the	Pan To L Pan To L I elements/win ectral elements n (average free NGLE_Y () DO	350100 ' 36010 ine Zoom To B dows s/windows quency)	and Reset	
00	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r Polarization Products des	310,00 ' 320, Frequency ransitions Selec ne type of spectral make	 OO ¹ 330,00 in Taraet Frame ct Other Transitions O Up to 4 spectra O More than 4 spectra Single continuur Spectral scan SINGLE_X O SI 	Pan To L Pan To L I elements/win ectral elements n (average free NGLE_Y () DO	350100 ' 36010 ine Zoom To B dows s/windows quency)	and Reset	
00 280,00 Pecceiver Bands [Spectral Type Jp to 4 spectral elements Center Freq Rest	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r Polarization Products des ents/windows Center Freq Sky	310,00 ' 320, Frequency Transitions Selection	 OO ¹ 330,000 in Target Frame ct Other Transitions Continuer O Single continuer O Single Continuer Single Continuer Single Continuer 	Pan To L Pan To L I elements/win ectral elements n (average free NGLE_Y DO Bandwidth,I	350100 ' 36010 ine Zoom To B dows s/windows quency) OUBLE O FULL	20 ' 370,00 Band Reset	
00 280,00 Receiver Bands [Spectral Type Jp to 4 spectral element Center Freq Rest 346.99835 GHz	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r Polarization Products des ents/windows Center Freq Sky 346.99552 GHz	310,00 320, Frequency Transitions Selection Se	00 330,00 in Taraet Frame at Other Transitions Up to 4 spectra More than 4 spectra Single continuur Spectral scan SINGLE_X SI	Pan To L Pan To L I elements/win ectral elements n (average free NGLE_Y DO Bandwidth,I z , 15.259KHz	350100 ' 36010 ine Zoom To B dows s/windows quency) OUBLE O FULL Resolution (0.013 km/s)	20 ' 370,00 Band Reset	
00 280,00 Receiver Bands [Spectral Type Jp to 4 spectral element Center Freq Rest 346.99835 GHz 345.79599 GHz	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r Polarization Products des ents/windows Center Freq Sky 346.99552 GHz 345.79318 GHz	310,00 320, Frequency ransitions Selection re type of spectral make sired <u>Transition</u> H13C0+ 4-3 COv=0 3-2	00 330,00 in Taraet Frame at Other Transitions Other Transitions More than 4 sp Single continuur Spectral scan SINGLE_X SI 51NGLE_X SI 62.5MHz 62.5MHz	Pan To L Pan To L l elements/win ectral elements n (average free NGLE_Y DO Bandwidth,I z , 15.259KHz z , 15.259KHz	350100 ' 36010 ine Zoom To B dows s/windows quency) OUBLE O FULL Resolution (0.013 km/s) (0.013 km/s)	20 ' 370,00 Band Reset	
00 280,00 Receiver Bands [Spectral Type Up to 4 spectral elements Center Freq Rest 346.99835 GHz 345.79599 GHz 347.33082 GHz	290100 ' 300100 ' Transmission Other T Spectral Type: Choose th observation you wish to r Polarization Products des ents/windows Center Freq Sky 346.99552 GHz 345.79318 GHz 347.32799 GHz	310,00 320, Frequency Transitions Selection Transitions Selection	 I 330,00 I Taraet Frame Continuation Other Transitions Othe	Pan To L Pan To L l elements/win ectral elements n (average free NGLE_Y DO Bandwidth,I z , 15.259KHz z , 15.259KHz z , 15.259KHz	350,00 ' 360,0 ine Zoom To B dows s/windows quency) OUBLE O FULL Resolution (0.013 km/s) (0.013 km/s) (0.013 km/s)	20 ' 370,00 Band Reset	

The four spectral lines observed in one science goal, using the USB.

- Using mode 12, we get 0.01 km/s in resolution. If mode 9 is used, the resolution would be about 0.1 km/s, but with a bandwidth of 500 MHz, and may be useful to observe more than one line in each spectral window, and put other basebands at other frequencies.
- Only the USB is used in this example, as can be seen in the graphical representation for the band (the transmission of the atmosphere is also showed).

Further reading

- * For a more complete description of the correlator:
- * Escoffier et al. 2007, A&A, 462, 801.
- * Escoffier *et al.*, ALMA memo 556.
- * Wootten 2008, ASS, 313, 9.